HomeVolumesContestsSectionsForumsUsersPrintHelpAbout

Sections > Exhaustive search & Backtracking > problem:


50367 - Bar Codes

Guest
• Review clarifications (1)

Section problems

• 50367 - Bar Codes
• 50250 - The Knight
• 50707 - Rebus
• 50265 - Liars and Knights
• 51071 - Phalanx-2
• 50715 - Zero Sum
• 50711 - Snail Trails
• 50472 - Minimum Sum Triangle
• 50306 - Beautiful Numbers

Feedback

If you notice incorrect translations in Contester, please let author know.

Time limit 2000/4000/4000/4000 ms. Memory limit 65000/65000/65000/65000 Kb.

Bar Codes

A bar-code symbol consists of alternating dark and light bars, starting with a dark bar on the left. Each bar is a number of units wide. Figure 1 shows a bar-code symbol consisting of 4 bars that extend over 1+2+3+1=7 units.

Description:

Figure 1: Bar-code over 7 units with 4 bars

In general, the bar code BC(n,k,m) is the set of all symbols with k bars that together extend over exactly n units, each bar being at most m units wide. For instance, the symbol in Figure 1 belongs to BC(7,4,3) but not to BC(7,4,2). Figure 2 shows all 16 symbols in BC(7,4,3). Each `1' represents a dark unit, each `0' a light unit.

0: 1000100 | 4: 1001110 | 8:  1100100 | 12: 1101110
1: 1000110 | 5: 1011000 | 9:  1100110 | 13: 1110010
2: 1001000 | 6: 1011100 | 10: 1101000 | 14: 1110100
3: 1001100 | 7: 1100010 | 11: 1101100 | 15: 1110110

Figure 2: All symbols of BC(7,4,3)

Input
Each input will contain three positive integers nk, and m (1 ≤ nkm ≤ 50).

Output
For each input print the total number of symbols in BC(n,k,m). Output will fit in 64-bit signed integer.

Sample Input

Output for Sample Input

7 4 3
7 4 2

16
4

 

Для отправки решений необходимо выполнить вход.

www.contester.ru