HomeVolumesContestsSectionsForumsUsersPrintHelpAbout

Sections > Arithmetic > problem:


50388 - Number of Armstrong Numbers - 1

Guest
• Review clarifications (1)

Section problems

• 50310 - Kinetic Energy
• 50314 - Falling Distance
• 50316 - Population Bar Chart
• 50530 - Sum of Ratios
• 50384 - Permutations revisited
• 50368 - Right-most non zero digit in N!
• 50293 - Sum of odd numbers from ...
• 50365 - Sum of the numbers from a...
• 50388 - Number of Armstrong N...
• 50363 - Class GPA Average
• 50390 - Total Salary Paid
• 50392 - How much space
• 50394 - Water Bills
• 50651 - Largest power of two
• 50297 - Divisible By Five
• 50332 - Variance of a series
• 50398 - Sum of kth Anti-diagonal

Feedback

If you notice incorrect translations in Contester, please let author know.

Time limit 2000/4000/4000/4000 ms. Memory limit 65000/65000/65000/65000 Kb.
Prepared by Ibrahim Mesecan.

Number of Armstrong Numbers

Number 153 has 3 digits and if you take the 3rd power of every digit and calculate the sum of them, you will have the same number again.
153 = 13 + 53 + 33
     = 1 + 125 + 27 = 153
Thus, for 1634 you should take the fourth powers of every digit (because the number has 4 digits) and calculate the sum. Because the sum is equal to the number itself, then, we say that this number is an Armstrong Number.

Question: Assume that you are given the following functions:

  • int numDigits (int num); // a function which calculates the number of digits in the given number (num)
  • int power(int n, int p); // calculates np
  • int getDigit(int num, int i);// gets ith digit of the given number num. And digits start from 1.

Using the functions above, in your program, calculate the number of Armstrong numbers between the given numbers n and m.

Input specification
There will be two numbers between 1 ≤ n < m ≤ 100000.
Note: For C and C++, you can include the functions using the following statement.
  #include "utils/armstrong.h" Download armstrong.h.

Output specification
show one integer: the number of Armstrong Numbers. If no Armstrong numbers exists, then show 0 (zero).

Input I   Input II  
 100 200  400 2000
Output 1   Output 2  
  1
  2

Для отправки решений необходимо выполнить вход.

www.contester.ru