ГлавнаяСборникиТурнирыРазделыФорумыУчастникиПечатьПомощьО системе

Разделы > Арифметика > задача:


50404 - Sum of Self Powers

Гость
• Вопросы к жюри (3)

Задачи раздела

• 50398 - Sum of kth Anti-diagonal
• 50400 - nth Row rth Element of a Table
• 50330 - Find the average of n numbers
• 50401 - Sum of Odd Numbers
• 50369 - Base Conversion
• 50407 - Missing Number
• 50336 - Buying Carpets
• 50338 - Convert Into Decimal
• 50404 - Sum of Self Powers
• 50295 - Weighted Average
• 50343 - The number of Ending Zero...
• 50296 - Total Discount Rate
• 50289 - Monthly Allowance
• 50403 - Number of Chairs
• 50408 - Molecules
• 50481 - Car Parking
• 50413 - Valid Permutations

Обратная связь

Если у вас есть предложения или пожелания по работе Contester, посетите форум сайта www.contester.ru.

Лимит времени 2000/4000/4000/4000 мс. Лимит памяти 65000/65000/65000/65000 Кб.
Prepared by : Kristi Dalipaj.

Sum of Self Powers

Question:
A mathematician needs to sum self powers of all the numbers up to n for a problem. Since it would be too much hand work and calculation, he asks for your help in creating a program which does this operation.

To help you, he provides a simplification that for his special formula, he doesn't need to sum all digits but only the last d digits of each n^n;

Question: Write a program to calculate the formula given above for the last d digits of each power.

Input specification
Two integers: n and d which will be given by the user, 1 ≤ n ≤ 10000 and 1 ≤ d ≤ 13.

Output specification
Print the last d digits, if there are 0 in the beginning (f.e 01231321) don't print them but print the rest of the numbers (in the previous example simply print 1231321).

 Sample Input I     Sample Input II   
5 3
10 10
 Sample Output I     Sample Output II   
 413
 405071317

Explanation for Sample Input 1:
     1^1 + 2^2 + 3^3 + 4^4 + 5^5=
     1 + 4 + 27 + 256 + 125 = 413

Для отправки решений необходимо выполнить вход.

www.contester.ru