ГлавнаяСборникиТурнирыРазделыФорумыУчастникиПечатьПомощьО системе

Турниры > IMPC-2014-15 Questions > задача:


Ind_02-30. 50657 - Permutations and Combinatorics

IMPC-2014-15 Questions

Старт: 22.ноя.2014 в 15:00:00
Финиш: 22.ноя.2014 в 20:00:00
Турнир завершён!
• Турнирная таблица

Гость
• Вопросы к жюри (1)

Задачи турнира

• 4th-3. 50535 - Image Compression
• 4th-6. 50536 - Epoka Furgon Shpk
• Ind_01-10. 50752 - Student Groups
• Ind_01-20. 50416 - Placing Domino...
• Ind_01-30. 50764 - Fast Typing Co...
• Ind_01-50. 50718 - Elevator
• Ind_02-10. 50497 - Falling Bricks - ...
• Ind_02-20. 50745 - Bitonic Sequence
• Ind_02-30. 50657 - Permutatio...
• Ind_03-10. 50743 - Total Scholarshi...
• Ind_03-20. 50515 - Lines - Revisited
• Ind_03-40. 50777 - Dwarfs Maze
• Ind_03-50. 50679 - Jetpack Hurdle J...
• Ind_04-10. 50787 - Expected Value
• Ind_04-20. 50520 - Filling a Matrix ...
• Ind_04-30. 50658 - The Message

Обратная связь

Если у вас есть предложения или пожелания по работе Contester, посетите форум сайта www.contester.ru.

Лимит времени 2000/4000/4000/4000 мс. Лимит памяти 65000/65000/65000/65000 Кб.
Question by Enes Kristo.

Permutations

Combinatorics is one of the most complicated areas of mathematics. Fortunately informatics has enabled mathematicians to calculate large amounts of complex data in much shorter times. Pr. Green, who isn't very creative, needs to solve a problem:

We have the set of numbers from 1 to n, and we have to prepare the permutations of the numbers from 1 to n in such a way that if we call the permutation a1, a2,...,an; we take any two numbers from the set ai and aj, where i < j, then ai + i ≤ aj + j.

Question: How many permutations are there complying the given criteria?

Input specification
You will be given an integer (n) which determines the range from 1 to n where n ≤ 20

Output specification
The number of the possible combinations that follow this condition.

Sample Input
3
Sample Output
4

Explanation:
There are 4 cases possible here:

  • 3,2,1 (since 3+1 ≤ 2+2 ≤ 1+3)
  • 1,3,2 (since 1+1 ≤ 3+2 ≤ 2+3)
  • 1,2,3 (since 1+1 ≤ 2+2 ≤ 3+3)
  • 2,1,3 (since 2+1 ≤ 1+2 ≤ 3+3)
On the other hand, 2 3 1 doesn’t comply, since (2+1) is less than (3+2), but, (3+2) is not less than (1+3)



Для отправки решений необходимо выполнить вход.

www.contester.ru